Imaging Equipment: Ultrasound
Technology, usage, and service

WEDNESDAY SEPTEMBER 14
6 PM UNIVERSAL TIME (UTC) 2 PM NEW YORK TIME (ET)

REGISTER FOR FREE
https://bit.ly/3Qox6a5

MODERATOR
MLADEN POLUTA
GCEA Founders Council Member (S. Africa)

PRESENTERS
ARIS DERMITZAKIS
INBIT (Institute of Biomedical Technology) (Greece)

DAN CLARK
Nottingham University Hospital NHS (UK)
Ultrasound Imaging

Basic Principles
History of Ultrasound

• Discovery of high frequency sound waves (ultrasound) by Lazzaro Spallanzani, when he demonstrated the ability of bats to navigate through backscattering sound waves of inaudible sound (1794).

• First mathematical description of sound waves by Lord Rayleigh (1877).

• Breakthrough in the evolution of ultrasound with the discovery of piezoelectric effect by Pierre Curie (1880):
 • Generation and
 • Reception of ultrasound waves was possible for the first time.
Precursors of Medical Ultrasonic Systems

- After the Titanic sank, underwater sonar navigation systems for submarines were developed to detect icebergs underwater from 2 miles away (1914).
- The first RADAR (Radio Detection And Ranging) system was invented by Edward Appleton in 1924.
- Ultrasonic metal flaw detectors were constructed to check the integrity of the armor plates of battle tanks (1930’s).
Evolution of Medical Ultrasound Systems

First use of ultrasound in medicine was done for therapy and not for diagnosis.

- Using the heating and disruptive effects of ultrasound, Russell Meyers performed craniotomies and used ultrasound to destroy parts of the basal ganglia in Parkinson patients.

- Ultrasound was used extensively in physical and rehabilitation medicine for the treatment of patients with gastric ulcers and rheumatic arthritis.

- In 1940 first claims on the effectiveness of ultrasound as an curing modality were made.
Diagnostic Ultrasound

- In 1940, Goht and Wedkid presented the first paper that explored the possibility of using ultrasounds as a diagnostic tool.
- Dussik in 1946 was the first physician that employed ultrasound in medical diagnosis and called the new technique “hyperphonography”.
- Donald and MacVicar team in 1963 were the first to produce a 2D image (B-mode), visualising the gestational sac.
- In 1963 the first commercial medical imaging ultrasound device called “Diasonograph” was built at Kelvin & Hughes at Hillington, Glasgow.
- Baker and Raid in 1974 were the first who constructed a duplex pulsed-doppler scanner that enabled 2D grayscale imaging where the volume blood flow could be determined.
Diagnostic Ultrasound

• Since then enormous progress has been made:
 • Real-time high resolution images of anatomy and blood flow
 • 3D imaging
 • Use of Ultrasound Contrast Agents
• Nowadays 25% of all medical imaging clinical procedures are done with ultrasounds:
 • Economical
 • Portable
 • Real time imaging
 • Safe for the patient
 • Integrate anatomical information with blood velocity monitoring in real time
Parameters of Sound Wave

- Wave Length \(\rightarrow \lambda \, (m) \)
- Period \(\rightarrow T \, (sec) \)
- Amplitude \(\rightarrow A \)
- Frequency \(\rightarrow f = 1/T \) number of periods per second (Hz)
- Speed \(\rightarrow c = \lambda \times f \Leftrightarrow \lambda = \frac{c}{f} = c \times T \, (m/s) \)
Speed of Sound

• The speed of sound is independent of the parameters of the soundwave.

• Depends on the properties of the medium:
 • κ = Compressibility of the medium [m2/N]
 • B = Adiabatic bulk modulus (modulus of elasticity) [N/m2]
 • ρ_0 = Mean density of the undisturbed medium [kg/m3]

• Since the speed (c) and the insonifing frequency (f) are predefined, the wavelength changes in each medium based on equation:
 \[\lambda = \frac{c}{f} \]

• If the speed is kept constant (propagation in the same medium), when the frequency increases the wavelength decreases.

$$c = \sqrt{\frac{1}{\rho_0 \kappa}} = \sqrt{\frac{B}{\rho_0}}$$
Speed of Sound

<table>
<thead>
<tr>
<th>Medium</th>
<th>Density $[\text{kg/m}^3]$</th>
<th>Speed of sound $[\text{m/s}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.2</td>
<td>333</td>
</tr>
<tr>
<td>Lung</td>
<td>0.40×10^3</td>
<td>650</td>
</tr>
<tr>
<td>Distilled water</td>
<td>1.00×10^3</td>
<td>1480</td>
</tr>
<tr>
<td>Blood</td>
<td>1.06×10^3</td>
<td>1566</td>
</tr>
<tr>
<td>Fat</td>
<td>0.92×10^3</td>
<td>1446</td>
</tr>
<tr>
<td>Kidney</td>
<td>1.04×10^3</td>
<td>1567</td>
</tr>
<tr>
<td>Liver, spleen</td>
<td>1.06×10^3</td>
<td>1566</td>
</tr>
<tr>
<td>Muscle</td>
<td>1.07×10^3</td>
<td>1542-1626</td>
</tr>
<tr>
<td>Bone</td>
<td>$1.38 - 1.81 \times 10^3$</td>
<td>2070-5350</td>
</tr>
<tr>
<td>Brain</td>
<td>1.03×10^3</td>
<td>1505-1612</td>
</tr>
</tbody>
</table>
Reflection - Transmission Coefficient

\[R_a = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2} \quad T_a = 1 - R_a \]

- When an ultrasound wave encounters a tissue interface between two media with different acoustic impedances, only a percentage of the wave’s energy passes through.

Medical ultrasound is limited in soft tissue imaging with reflection coefficient around 10%
Attenuation

• Attenuation is the energy loss of an ultrasound wave when it propagates thought the tissues.
• Causes of the loss:
 • Scattering inside the tissue
 • Absorption (the conversion of acoustic energy into heat)

\[A(f, r) = e^{-2\pi\beta fr} \ \text{\(dB/\text{MHzcm}\)} \]

• Increases with:
 • frequency
 • depth (distance from the transducer)
Attenuation in human tissue

Ultrasound imaging of the inner structure of the bones is practically impossible due to high attenuation of ultrasound.
Generation of Ultrasound

- Ultrasound transducers generate ultrasound with the use of **piezoelectric crystals**
- Piezoelectric crystals: *materials that convert electrical signal to pressure oscillations in their surface via mechanical deformation*
- **Inverse piezoelectric** effect is used for reception of backscattered echo
- Medical ultrasound systems operate in frequency range of **1 to 30 MHz** (audible range 20Hz to 20 kHz)
Probes

• Electrical signal applied on the ultrasound transducer
• Based on the piezoelectric effect an ultrasound wave is created
• Types of transducers:
 • **Single frequency transducer** ➔ transmit in one central frequency, lower amplitude in near frequencies
 • **Broadband transducers** ➔ transmit equal amplitudes in a range of frequencies
 • **Multi frequency transducers** ➔ Choise of central transmitting frequency i.e. 5.0 MHz, 7.5 MHz etc.
Ultrasound Imaging
Display

- **A-Mode** ➜ Amplitude Mode was the first mode ever used, nowadays used only to measure distance
- **M-Mode** ➜ Motion Mode provides information about the motion, nowadays used in diagnosing heart valve diseases
- **B-Mode** ➜ Brightness Mode provides a 2D image of the tissue, used in all modern scanners as the standard display mode for displaying anatomic data
- Combination of all these modes along with other technics, such as doppler flow imaging, are used in modern ultrasound systems

Source: Bijan Siassi, Shahab Noori, Ruben J. Acherman, and Pierre C. Wong: *Practical Neonatal Echocardiography* Copyright © McGraw-Hill Education. All rights reserved.
A-Mode

• In the Amplitude-mode the back scattered signal was shown as a function of depth.

• The produced image was one-dimensional and only depth data could be measured.

• Ultrasound pulse was sent in only one direction.

• The backscattered echo was captured (A-Line) and was presented in X-Y axes, where X was the depth and Y the amplitude of the back scattered pulse.
M-Mode

• An evolution of the A-mode, was the motion mode (M-mode)

• In the M-mode, several lines were emitted in the same direction and the backscattered echo was recorded (A-lines)

• By acquiring several A-lines and displaying each one side by side, information about the motion was seen.

• The acquired lines were presented in X-Y axes, where X axis corresponds to time and Y axis to the depth
B-Mode

- The breakthrough in the field of medical ultrasound was done with the invention of Brightness mode.
- In the B-mode a series of focused fields lines were transmitted in different direction, acquiring a series of A-lines that covered all the region of interest.
- The A-lines were then merged and missing data were interpolated and a 2D image was created.
Linear - Convex Array Probes

- In linear and convex array transducers scanning is done by choosing the a set of active elements.
- The amount of active elements compromise the aperture.
- The scanning is done by exciting the next element of the aperture and resting of the last one. This is done sequentially, until the whole region under the transducer is scanned.
- In linear arrays the size of the transducer defines the size of the scanning region (~10 cm)
- In convex transducer larger scanning region is achieved by changing the shape of the transducer
Phased Array Probes

- They have the same geometry as the linear arrays.
- Much smaller footprint (1-3 cm) and scan an area much larger than the size of the aperture.
- Smaller number of elements (64-128).
- Pitch (centre to centre element distance) is less than $\lambda/2$.
- All elements are used both in transmit and receive.
- Scanning is done by steering the transmitted beam, by applying tilted delay profiles.

Phased arrays are used in cardiology, where there is only a small "acoustic window" between the ribs and the lungs.
Array Imaging
Beamforming

- Beamforming is the manipulation of the signals of the elements of array transducers to enhance focusing and shape directivity of the beam.
- It is achieved electronically by changing the time delay (phase) and amplitude (apodization) of the voltage applied on each element.

Beam steering and focusing

Electronic focusing

![Diagrams showing beam steering and focusing](globalcea.org)
Beamforming

• Central Line Focus
Beamforming

Initial position of US beamline

Direction of sweep of US beamline
Spatial resolution is the ability of an imaging system to distinguish between closely-spaced scatterers.

3 components:
- Axial
- Lateral
- Elevation
Axial (Range) Resolution

- Axial resolution is limited to half the wave length (λ) of the transmitted pulse.
- It is determined by the duration of the acoustic signal of each element which is determined by the characteristics of the transducer:

(\uparrow) High central frequency \rightarrow (\downarrow) short acoustic pulses \rightarrow (\uparrow) higher axial resolution \rightarrow (\downarrow) Lower penetration depth (due to attenuation)
Lateral (Azimuthal) Resolution
Lateral (Azimuthal) Resolution

(↑) Wider Aperture size ➔ (↑) higher axial resolution
Lateral (Azimuthial) Resolution

- Lateral resolution is **inversely proportional** to the transmit frequency

- \((\uparrow)\) **Higher frequency \(\rightarrow\) (\(\downarrow\))**
 - Smaller main lobe width \(\rightarrow\) (\(\uparrow\))
 - Higher lateral resolution \(\rightarrow\) (\(\downarrow\))
 - Lower penetration depth (due to attenuation)
Elevation Resolution
Elevation Resolution

- Not directly visible in an ultrasound image, because it’s plane is orthogonal to imaging plane.
- It is determined by the thickness of the slice in the elevation direction.
- Linear arrays are also called 1D arrays because elements are only in the lateral direction.
- Only one element is at the elevation direction \rightarrow beam characteristics cannot be controlled with beam former \rightarrow echoes outside of the imaging plane degrade image quality
2D Probes
2D Probes

azimuth

elevation

azimuth
3D Imaging
3D Imaging
3D Imaging
3D Imaging

- Inferior Vena Cava
Blood Flow Imaging

• Based on the Doppler Effect
• Super Impose Blood Flow on structural images
• As a convention, scatterers moving towards the tdr. are coloured red, while those moving away blue.
• Modern systems also use:
 • Phase Shift Velocity Estimators
 • Time Shift Velocity Estimators

\[
d_{D} = 2 \cdot f \cdot \frac{V \cdot \cos \Theta}{c}
\]

- flow velocity = \(V \)

Higher Doppler frequency obtained if:
- velocity is increased
- beam is more aligned to flow direction
- higher frequency is used
Ultrasound Contrast Agents (UCA)

- Weak reflection of ultrasound from the blood (60dB smaller than tissue)
- Microbubbles (~3 μm) that contain gas that oscillate or brake when insonified.
- By injecting UCA (higher reflectors) blood signal increases and even blood flow in the microcirculations can me detected.
- Gas can be replaced with drugs, for targeted drug delivery.
Ultrasound Contrast Agents (UCA)

- Detection of Haemangioma
Thank You
Maintenance of Ultrasound Machines in Hospitals

Prof Dan Clark OBE
Head of Clinical Engineering, Nottingham, UK
Health Technology Management

- Integrated Service Planning
- Identified Clinical Need
- Requirements Capture
- Funding

- Technology Specification
- (Standardisation)
- Lifetime Planning
- Options Appraisal / Tendering
- Review & Selection

- Approval
- Procurement
- Contracts
- Preparation

- Delivery Checks
- Inventorying
- (Installation)
- Configuration
- Accepted Testing

- Information Access
- Competencies
- Practices
- Support Services
- Supplies
- Governance

- Availability & Utilisation
- (Equipment Libraries)
- Performance & Safety Assurance
- Infection Control
- Clinical Effectiveness
- Risk Management

- Evidence Review
- Supplier Assessment
- Replacement Planning
- Donation / Return / Dispose

- Equipment Servicing
- Decontamination
- Specialist Support

- Deployment
- Commissioning
- Acceptance

- Inventory Management
- Training & Assessment
- Routine (User) Maintenance

- Use
- Disposal
- Replacement Planning
- Integrated Planning
Health Technology Management

(1) Approvals
(2) Commissioning
(3) Equipment Maintenance
 (Operational Management)
Challenges - 1

• Multiple, diverse clinical settings
Challenges - 2

• Multiple makes and models
Challenges - 3

- Multiple probes on a single machine
Challenges - 4

- Multiple skill sets needed
 - in house CEs, OEMs, imaging physics, Infection Control, Information governance
Our approach - 1

Approvals

1. Gather base data about the product
 1. Regulatory
 2. Product Commitment
 3. Product support
 4. Implementation
 5. Declarations

2. Internal Stakeholder Reviews
Our approach -2

Commissioning

1. Robust Internal Quality Assurance
 1. Probe Rejection rate ~ 10%
Our approach - 3

1. Operational Management
 1. Multiple stakeholders but whole process managed by Clinical Engineering
 2. Technical delivery – external contracts
 3. Patient Identifiable Data (PID)
 4. Technical Quality
 5. Image Quality
 6. Audit
 7. Decontamination
Lessons Learnt

• Manage expectations
• Communications
• Understand (and accept?) quality limitations
• Allow time to manage the process
• Probe Library
• Finances
Thank You!

Questions
A list of additional topics and dates for next webinars will be soon announced on our website www.GlobalCEA.org.

THANK YOU for your participation.